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The boundary-layer flow over a cooled horizontal plate is considered. It is shown that 
the real part of the spectrum of the evolution operator of the linearized equations is 
not bounded uniformly from above which explains the difficulties encounterd by a 
numerical solution. Furthermore it is shown that near the leading edge an asymptotic 
expansion of the solution is not unique. A one-parametric family of asymptotic 
expansions of solutions can be constructed. 

1. Introduction 
Though there are several papers presenting numerical solutions to the mixed- 

convection boundary-layer flow above a cooled horizontal plate none of these results 
is really satisfactory (Schneider, Steinriick & Andre 1994). All solutions agree near the 
edge of the plate but they differ significantly on where and how a singularity occurs. 
Schneider & Wasel (1985) were the first to find an unusual behaviour. They found 
a singularity with a finite wall shear stress. Later Wickern (1991a, b) claimed that 
the boundary-layer flow terminates in a Goldstein-type singularity. Daniels (1992) 
proved analytically the possibility of a singularity with an infinite wall shear stress. 
Considering that the numerical solution for the case of the boundary-layer flow 
above a heated horizontal or an inclined heated or cooled plate is straightforward 
the difficulties in the case of a cooled horizontal plate are surprising. In this paper 
we investigate the mathematical reason for this controversy. 

The modified boundary-layer equations for the mixed-convection flow above a 
horizontal plate in dimensionless form are 

au au a p  a*u 
ax ay  ax ay2’ 

u- + v -  = -- +- 
a P  0 = -- + 9, 
aY 

aU av - + - = o ,  ax a y  
as as 1 a2s 

a x  ay Pray2’ 
u-++v- = -- 

where the dimensionless coordinate x parallel to 

(1.3) 

(1.4) 

the plate is made dimensionless 
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with the reference length L = U:/(g jAT)*v  which depends on the velocity U ,  of 
the free stream, the gravity acceleration g ,  the thermal expansivity j?, the kinematic 
viscosity v and the difference AT between a reference value of the plate temperature 
T,  and the temperature T, of the undisturbed fluid. The dimensionless coordinate 
y perpendicular to the plate is scaled with LRe-'12, where Re = U,L/v is the 
Reynolds number. The velocity components u, u parallel and perpendicular to the 
plate are scaled with U ,  and U,Re-'I2. The difference 9 between the temperature 
of the disturbed and undisturbed fluid is scaled with A T .  Reference values for the 
dimensionless skin friction o and the dimensionless heat flux density q are p ,Ui /Re  
and kATRe-'12/L, where p, is the density of the undisturbed fluid and k is the 
thermal conductivity of the fluid. Note that according to this scaling we have 
z = ( d / d y ) u ( x , y  = 0)  and q = ( d / d y ) 9 ( x , y  = 0). 

In the classical boundary-layer equations the pressure p (which is scaled with 
p , U i )  is determined by the outer flow and does not depend on the perpendicular 
coordinate y. Here, using Boussinesq's approximation, the boundary-layer equations 
are modified so that the hydrostatic pressure depends on buoyancy effects induced 
by the temperature difference 9 with the unperturbed fluid. The Prandtl number 
Pr = v/a, with a the thermal diffusivity, is the only non-dimensional parameter in the 
problem. 

The boundary conditions at the plate are given by the no-slip conditions and a 
prescribed temperature difference with the unperturbed fluid: 

u(x ,  0) = 0, v(x ,O)  = 0, q x ,  0) = $,(x) ,  x > 0. (1.5) 
Since the solution of the boundary-layer equation has to match with the outer flow 

the asymptotic boundary conditions for y + co must hold: 

u ( x ,  00) = 1, $(x, 00) = 0, p(x ,  00) = 0. ( 1-61 
At the leading edge the flow is unperturbed, thus the initial conditions 

U(0,Y) = 1, S(0,Y)  = 0, Y > 0, (1.7) 
hold. It is easy to verify that the modified boundary-layer equations (1.1)-(1.4) are 
of parabolic type in the sense defined by Courant & Hilbert (1968). Thus one might 
assume that ( l . l t (  1.4) together with the boundary and initial conditions (1.5H1.7) 
is a well-posed problem. Indeed it is observed that (l.lb(1.4) is well posed in case of 
a heated plate (SW > 0). But this is not the case for a cooled plate. 

A similarity solution exists for a plate temperature distribution of the form 9,(x) = 
kx-'12 for k 2 ko < 0 (Schneider 1979). In particular for k 2 0 (heated plate) a unique 
similarity solution exists, while for ko < k < 0 (cooled plate) two similarity solutions 
exist. For k < k~ no similarity solution exits at all. It turns out that the plate is 
adiabatic and that the heat transfer is concentrated at the leading edge of the plate. 
In this paper we will consider the case of a constant wall temperature 9, = -1 and 
point out the mathematical difficulties. 

A necessary condition for the well posedness of a linear evolution problem 

ut = A(t)u, u(0) = UO, (1.8) 

is that the real part of the spectrum of the evolution operator A is bounded uniformly 
from above (Pazy 1983). This is the case for the heat equation or the wave equation 
on a bounded interval with Dirichlet boundary conditions and appropriate initial 
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conditions. But it is not the case for the Laplace equation utt = -un, with u(-1,t) = 
u(1, t) = 0, and the initial conditions u(x,O) = f(x), u,(x,O) = g(x). 

Since the boundary-layer equations are solved like an evolution system starting 
from the leading edge of the plate, we try to verify the above condition. Since (1.1)- 
(1.4) form a nonlinear system and the x-derivatives are not given explicitly we have 
to linearize (1.1)-(1.4) at a given solution and study locally the linearization which 
yields a generalized eigenvalue problem which will be analysed and the consequences 
of the results will be discussed. 

2. Eigenvalues near the leading edge 

introduce the coordinate transform 
To analyse the boundary-layer equations near the leading edge it is convenient to 

5 = (x/pr)’/2, 9 = Y/x’ /~ .  (2- 1) 

Let v(x,y) be a streamfunction; then we indroduce a transformed stream function f 
by 

y(x, y) = x1/2f(x1/2/Pr1/2, y / ~ ’ / ~ ) .  (2.2) 
The dependence of the coordinate transform (2.1) on the Prandtl number turns out 
to be useful when considering the limiting case of a small Prandtl number. From 
now on we will denote derivatives with respect to q with a prime and with respect to 
5 with a subscript. The dimensionless skin friction z and the dimensonless heat flux 
density q are given by 

9’. (2-3) 
1 It a 

f ,  q = - $ = -  a 2  

ay2  pr’/25 ay W 2 5  

2f” + f f”  = Wf; - f”fc + g), 

-$I’ + f9’ = C(f‘9c - S’fc), 

z=- -v=-  

Thus (l.lH1.4) are equivalent to 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Note that the function g is the transformed pressure gradient parallel to the plate. 
Assuming a regular behaviour off ,  9 and g near the leading edge we obtain ordinary 
differential equations for the initial values of f ,  9 and g where f(0,q) satisfies the 
Blasius equation. We can construct formally a regular expansion of a solution of 
(2.4H2.7) by a power series expansion with respect to ( (Afzal 8z Hussain 1984): 

2 
Pr 

Pr-ll’g‘ + 19’ = (a,, 
with the boundary conditions 

f ( t , O )  = f ’ ( t ,O)  = $ ( L O )  + 1 = f’(t,w) - 1 = W5,w) = g(t,w) = 0. 

N N N 

n=O n=O n=O 

We denote by f,, a,, g, a solution of (2.4H2.7) with a regular expansion (2.8). 
Let us assume we perturb a given solution at 50 and let AF, AS, AG denote the 

perturbation o f f ,  9, g. We are interested in whether the perturbation grows or 
decays locally. Thus we linearize (2.4)-(2.7), freeze the 5-dependence of the coefficient 

9 F L M  278 
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functions and insert 

W T , v t )  = F(vt)eAt, W r y  vt )  = D(vtkAt, W r y  v t )  = G(vt)e“, 

into the linearized equations. This yields a generalized eigenvalue problem: 

2F’” - ATo(f’F’ - f ” F )  - 50G = - f  F” - f ” F  + ro(f;F’ - f t F ” ) ,  
2 

-D” - A&(f‘D - 9‘F) = -fD‘ - 9’F + To(9tF‘ - f t D ’ ) ,  
Pr 

Pr-’12G’ - AroD = -qDIY 
F(0)  = F’(0) = D(0) = F’(co) = D(oo) = G(co) = 0. 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 
(2.13) 

Let us first consider the linearization near the leading edge of the plate. We solve 
the eigenvalue problem by an asymptotic expansion with respect to small values of 
to. We introduce the expansion 

VO 
3, = - + v1 + v250 + . . . , 

T O  
(2.14) 

(Fy D, G )  = (Fay Do, Go) + (Fly Diy Gi)to + (F2,DzY G2)ToZ + . . . , (2.15) 

which yields the two decoupled eigenvalue problems for the leading terms of the 
asymptotic expansion: 

(2.16) 

(2.17) 

Both eigenvalue problems (2.16), (2.17) can be written in self-adjoint form and 
therefore have only real eigenvalues. It was shown that (2.16) has only negative 
eigenvalues (Libby & Fox 1964). Multiplying (2.17) by D and integration by parts 
yields 

2Fr + f F{ + f”Fo = vo(f‘F; - f”Fo), Fo(0) = FA(0) = F;(co) = Oy 

2 
-DO” + fDh + 9’Fo = vo(f’D0 - ~ ’ F o ) ,  
Pr 

D(0)  = D(co) = 0. 

(2.18) 

Thus all eigenvalues which have an expansion of the form (2.14) are negative for T o  
sufficiently small. The same asymptotic expansion of the eigenvalues holds in the case 
of forced convection over a plate. Since all eigenvalues are negative this indicates 
that the evolution problem is well posed. However in the case of mixed convection a 
second type of asymptotic expansion of eigenvalues exists : 

1 “ 
f lD2dq = - 1 (2Dr2 + flD2)dq < 0. 

vO I“ 0 

(2.19) 

Since it turns out that this eigenvalue is positive we denote it and its corresponding 
eigenfunction with a superscript +. Inserting (2.19) into the eigenvalue problem 
yields a singularly perturbed eigenvalue problem and we have to expect a matched 
asymptotic expansion for the eigenfunction. For the outer expansion we use 

G; 

G 
F+ =F‘” +{OPT +... D+ =D; +rob: +... G+ = - +... . (2.20) 

The leading-order terms of the asymptotic expansion satisfy 

(2.21) 
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with the solution 

Obviously not all boundary conditions at q = 0 can be satisfied and an inner 
expansion is needed. 

F; = f’, ij; = 91, G; = pr’/2@. (2.22) 

We define the inner expansion by 

and obtain the equations for the inner expansion: 

(2.23) 

(2.24) 

a3 = Gf”(O)/2 and b3 = Pra3. We can express the solution in terms of the Airy 
function Ai: 

(2.25) 

To determine 3.0‘ we have to consider the second-order equation. We obtain 

f’Ff - f N F t  + Pr”29o = 0, (2.26) 

with the solution 

(2.27) 

Matching the second-order outer expansion with the first-order inner expansion yields 
an equation for the eigenvalue A:: 

Pr’/29(0) - - f”(O)Ai’(O) 

”(O) nlmAi(s)ds 
Pr(0) = (2.28) 

and we finally obtain 

3. Other large eigenvalues 

For convenience we set 

We proceed similarly as in the previous section. We rescale G = H / E ~  and expand the 
eigenfunction in terms of E. For the first order of the outer expansion we obtain 

Let us now look for large positive eigenvalues of (2.10H2.13) where t o  is not small. 

E = ( A C ~ ) - ’ / ~ .  (3.1) 

f ’ 2 P  - (f’f’” - Pr’/2to$’)P = 0, F’(m) = 0. 

P = dl + dzq + O( 1). 

(3.2) 

Since f”’ and 9 decay for q + m the asymptotic behaviour of F for q large is given 
bY 

(3.3) 
9-2 
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Thus the boundary condition at q = 00 implies d2 = 0 and we can choose dl = 1. 
Note that since f'(0) = 0 equation (3.2) is singular at q = 0. The behaviour of P for 
q small is given by 

(3.4) 
where a l , ~  are the solutions of the quadratic equation 

&) = C l q a 1 m d  + c2qa2F2(v), 

a 2 - a + - = ~ ,  4 
22 

(3.5) 

where z and q are the dimensionless skin friction and heat flux density at the wall 
defined in (2.3) and P I ,  E2 are regular functions near q = 0 with Fi(0) = 1. We 
remark that C1 and C2 are determined uniquely by dl  = 1 and d2 = 0. 

For the inner expansion we use the expansion 

We obtain after some manipulations 

1 
2 

2 P  - Pr'l2to( 1 + Pr)zcE(iv) + 2 P P 5 0 z P  + - P r z r ; ( z y 2 P  - qE)  = 0, (3.7) 

(3.8) E(0) = P'(0) = P ( ' V ' ( 0 )  = 0. 
The equations for the inner expansion have two in$eqendent solutions fi3,@4 which 
decay exponentially , two indep%ndent solutions F5,FI which increase faster than 
exponentially and two solutions F1 - cal,  g2 - which behave algebraically as 5 
tends to infinity. The exponents ai are again the solutions of the quadratic equation 
(3.5). 

Therefore a solution of (3.7) has to be, a linear combination of F I ,  F2, F 3 ,  F 4  and 
for l --* 00 the asymptotic behaviour of F is given by 

(3-9) 
We suppose that the ratio c1/c2 can be determined uniquely by the boundary condi- 
tions (3.8) at ( = 0. 

Matching the inner and outer solutions we have to discuss several cases as follows. 

3.1. aj real 
This is the case if z2 2 4q. We assume a1 G a2. Then we have to distinguish two 
subcases: 

P(Y) 'v C ] c a '  + c p .  

(i) c2 # 0, for which we have c2 = C2, and y = a2 ; 
(ii) c2 = 0, then we have c1 = C I ,  and y = a1. 
In the first case the non-viscous bulk flow is reponsible for the large positive 

eigenvalue. Matching the inner and outer solutions yields C1 = ~ ~ 2 - ~ ~ c 1  and thus we 
can supplement (3.2) by the boundary condition 

to obtain an eigenvalue equation. Note that this problem is similar to the eigenvalue 
problem in Daniels (1992) for the occurrence of a singularity in a thermal boundary- 
layer flow. 

In the second case the viscous sublayer is responsible for the large eigenvalue. We 
can supplement (3.7) with the asymptotic boundary condition 

(3.11) 
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Eigenfunctions and eigenvalues of the eigenvalue problem (3.2), (3.10) and (3.7), (3.8), 
(3.1 1) have apparently not been observed numerically. 

3.2. aj complex 
In this case we write ai = 1/2 f i6 with 

(3.12) 

and have y = 1/2. Thus the outer solution for small values of q is given by 

P ( q )  = q1I2(C1 cos(6 logq)(l+ o(1)) + ~2 sin(6 logq)(I+ o(1)). (3.13) 

For the inner solution we have the asymptotic expansion for large values of [: 

E ( 0  = c ~ / ~ ( c ~  cos(6 log C )  + C, sin(6 log q)) .  (3.14) 

Assuming that the boundary conditions at [ = 0 for the inner expansion determine 
the ratio c1/c* uniquely and that the asymptotic boundary condition at q = a0 for the 
outer expansion determine the ratio C1/C2 uniquely the matching condition yields 

c1 (C1/C2) + tan6 log& 
c2 1 -(C1/C2)tan610g&’ 
_ -  - (3.15) 

an asymptotic equation for large positive eigenvalues. Note that (3.15) has infinitely 
many solutions. Since it holds only asymptotically only those solutions with E 

sufficiently small are of interest. The corresponding eigenvalues are given by 
nx 

I, - 39 exp s, with n E No, (3.16) 

where &, is a sufficiently large positive eigenvalue. In other words, if the skin friction 
is smaller than a certain value depending only on the heat flux density r2 < 4q an 
unbounded sequence of positive eigenvalues exists. In $6 we present numerical results 
showing the first five positive eigenvalues as functions of < along a solution branch 
(figure 3) and the corresponding F’-component of the corresponding eigenfunctions 
for 5 = 0.101 (figure 4). 

Since a well-posed linear evolution problem must have spectrum with its real part 
bounded from above we cannot treat the boundary-layer equation as an evolution 
problem any more. 

4. Non-uniqueness of the solution 
Now let us discuss a consequence of the existence of the positive eigenvalue 

1+ = A;/t4(l + O(<)) of the linearized problem. Besides the regular expansion (2.8) 
another type of expansion of a solution exists. To motivate the type of expansion we 
consider a simple initial value problem whose evolution operator has an eigenvalue 
with an expansion like A+. The general solution of the ordinary differential equation 

is given by the one-parametric family 
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with an arbitrary constant c. A similar situation holds in the case of the modified 
boundary-layer equations. 

Let f r ,  9,, gr be a solution of (2.4)-(2.7) with the regular expansion (2.8). Then 
using the expansion of the eigenvalue A+ and of the corresponding eigenfunction we 
can construct an asymptotic expansion of an alternative solution: 

where c is an arbitrary constant and A, f k ,  &, & have asymptotic expansions of the 
form 

E('fkl('1) (outer expansion) 

~ ~ l f k I ( < / ~ )  (inner expansion), 
I21 

and 

I2 1 

Inserting (4.3)-(4.5) and comparing equal powers of exp (-A/t3) yields 

The equations for B k  and & are of a similar structure. Now inserting the expansions 
for fr, 9r, g ,  and (4.6H4.8) and comparing equal powers of 5 we obtain equations 
for f k i ,  g k l ,  g k l ,  f k l ,  3 k l ,  t k l  and 111. The eqyations for j i o ,  fro, &o, &o, gio, f i i  and 
11, are exactly the same as for E:, D; C:, F; F r  and and thus the leading-order 
terms of the expansion of the alternative solution are just the leading-order terms of 
the eigenfunction (F+,  D+, G+) and A1 = AT. 
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Note that in order to determine the klth term of the expansion we need only terms 
with index jm where 0 < j.< k, and 0 < m < 1. The alternative solution (4.3H4.5) 
form a one-parametric famly of solutions parametrized by c. The expansion is only 
valid on an interval (O,[O) where cexp-A,/3ti << 1. 

Starting with [ = 0 the alternative solutions are at first very close to the solution 
with the regular expansion, but near [c - (A1/3 l n ( ~ ) ) ' / ~  they branch off very rapidly. 

5. Propagation of perturbations in a numerical scheme 
In this section we will investigate how a small perturbation is propagated in a 

discrete scheme for the numerical solution of the modified boundary-layer equations. 
For simplicity we will study only the implicit Euler scheme for the discretization in 
the [-direction and assume the q-direction is not discretized. Let fk(q), 8k(q), gk(q) 
be approximations to f, 9, g at the mesh points (k = kA(. Then the implicit Euler 
scheme is given by 

fk([,o)=fL([,o)=gk(t,o)+ 1 =fL( t ,a ) -1  =ak([ ,a )=gk( t ,a )=0 .  (5.4) 
To study how a perturbation propagates we assume that fk-1, f k  , &-I, &, gk-1, gk 

is a given numerical solution, linearize (5.1H5.4) and make an eigenvalue ansatz 

F k  = pFk-1, Qk = pgk-1 gk = pgk-1, (5 .5 )  

which yields the eigenvalue problem 

Fk(0) = Fi(0) = &(o) = Fi(a)  = &(a)  = Gk(a0) = 0. (5.9) 
Setting 2 = ( p  - l)/(pA{) we obtain the eigenvalue problem (2.10H2.13) where the 
derivatives with respect to are replaced by difference quotients. Assuming that 
the given numerical solution approximates a smooth solution and that 1 is a simple 
eigenvalue we have 

= 4 1  + O(At)), (5.10) 
and the corresponding propagation factor is 

1 (5.11) 
lU = 1 - A A t ( l +  O(A())' 
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A perturbation in the direction of the eigenvector corresponding to the eigenvalue 1 is 
damped if lpl < 1. This is the case if 1 < 0 or 1 > 2/At. In the first case the numerical 
scheme agrees with the differential equation; in the second case the numerical scheme 
damps the perturbation although the differential equation amplifies it. Obviously the 
stepsize is too large to resolve the differential equation correctly. For 1At - 1 the 
propagation factor tends to infinity and the numerical method collapses. Note that 
if XAt = 1 the linearization of the implicit Euler scheme is singular. To avoid these 
difficulties one has to choose the stepsize A t  sufficiently small. This is only possible 
if the real part of the eigenvalues is bounded uniformly from above. 

Now let us discuss what happens when the modified boundary-layer equations are 
solved by using the implicit Euler scheme. We have a large positive eigenvalue near 
the leading edge of the plate with an asymptotic expansion of the form (2.19). All 
perturbations are damped for 

c < ( (5.12) 
and the numerical solution seems acceptable. But in the interval 

( iA,+A()1/4 < t < (1,+At)1/4 (5.13) 

oscillations with an increasing amplitude will occur and near 

tcrit = Ccritt1/4, with Ccrit = = 0.247 x Pr-3/8,  (5.14) 

the numerical solution terminates in a singularity. 
We remark that the arguments presented here for the implicit Euler scheme can be 

carried over to any implicit scheme. For the Keller box scheme Wickern (1987) found 
the relation (5.14) but with a different constant Ccrit = 0.235 x Prd3l8 by numerical 
experiments. 

6. Numerical results 
In the previous section we have shown that the initial value problem (2.4)-(2.7) has 

no unique solution. A one-parametric family of solutions with a singular expansion 
branches off from a solution with a unique regular expansion. However the regular 
expansion is valid only for sufficiently small. Therefore we want to follow this 
solution numerically. Using an implicit numerical method we will run into difficultis 
at tcril which depends on the stepsize A t .  Therefore we choose first a stepsize and 
then pose the initial condition using the regular expansion at a point t o  > tcrit(A<). 
Since the solution is very sensitive to a perturbation of the initial condition in the 
direction of the eigenfunction F+, D+ corresponding to the positive eigenvalue 1, we 
perturb the initial condition: 

(6.1) 

We have normalized F f  by F+"(O) = 1. The constant o is arbitrary and we will solve 
the initial value problem for several values of a. 

We solve the equations (2.4H2.7) for Pr = 0.72 (air) using the implicit Euler scheme 
with a stepsize A t  = lop4. In figure 1 we have plotted the skin friction coefficient 
f"(0) and in figure 2 we have plotted the heat transfer at the plate $'(O) as functions 
of c for different initial conditions. 

We start at t o  = 0.05 from the regular expansion with n = 8. For 0 = -0.001465, 
-0.001450, -0.001442 the skin friction decreases very fast and finally vanishes. Note 

f ( t 0 , q )  = f!"' + aF+(q) ,  $(to, '1) = $1"' + OD+(?). 
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0 0.05 0.10 0.15 0.20 

6 
FIGURE 1. Regular expansion with 8 
terms: dashed line. Numbered curves show solution of inital value problem with initial data 
f(to,q) = f j ’ ) ( to ,~)  + aF+(q), 8([o,q) = 8!’)([0,q) + aD+(q) for various values of ( 0  and c (see 
table 1). 0, a2 = a - q / r 2  = 0; A - A, Schneider & Wasel (1985); 0 - 0, Wickern (1991a b). 

Wall shear stress f”(t,O) = r/Pr1/2[ for P r  = 0.72. 

t o  = 0.05 

label U 
1 -0.001465 
2 -0.001450 
3 -0.001442 
4 -0.001438 
5 -0.001437 
6 -0.001436 
7 -0.001404 

t o  = 0.06 

label a 
8 -0.003906 
9 -0.004395 
10 -0.004639 
11 -0.004883 
12 -0.005371 
13 -0.007813 

TABLE 1. Initial data 

that there is no singularity of the Goldstein type. For 0 = -0.001404,-0.001436 the 
skin friction increases very fast and becomes singular. It looks as if the different 
solutions branch off from the regular expansion which is in accordance with the 
non-uniqueness result of $4. We use t o  = 0.06 as a second starting point. For 
0 = -0.003906 the solution first seems to follow the ‘regular’ solution and then 
increases very fast. Increasing cr shows that all solutions first decay then increase and 
finally tend to infinity. However it is not possibly to see the ‘regular’ solution from 
where the increasing and decaying solutions branch off. Any solution with cr between 
-0.0044395 and -0.005371 can be a continuation of the ‘regular’ solution. 

The solution with starting point 50 = 0.05 and c = -0.001437 seems to be identical 
with the solution with the starting point (0 = 0.06 and 0 = -0.007813: it first decays 
very rapidly, then reaches a minimum, increases slowly and finally tends to infinity. 

Another interesting solution is obtained for the starting point 5: = 0.05 and 
c = -0.001438. First the skin friction decreases, then it reaches almost a positive 
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0 0.05 0.10 0.15 0.20 

F~GURE 2. Heat transfer at the plate 9'({,0) = q / P r ' / ' t  for P r  = 0.72. Regular expansion with 
8 terms: dashed line. Numbered curves show solution of inital value problem with initial data 
f((o, q )  = f!8'((~, q )  + uF+(q), S((0, q )  = 9!')((0, q )  + uD+(q)  for various values of (0 and u (see table 
1). 0 - 0, Wickern (1991a.b). 

5 

A 

0.08 0.09 0.10 
'04 

0.01 
5 

FIGURE 3. Positive eigenvalues 11 . . . I s  of (2.10H2.13) along the solution of the initial value 
problem with inital data ( 0  = 0.05, u = -0.001438 as functions of 5. 

minimum and suddenly this solution branch terminates in a numerical singularity. 
In order to verify that the numerical singularity is due to a large positive eigenvalue 
such as described in $3 we compute the eigenvalues and eigenfunctions along this 
solution. In figure 3 we have plotted the first five positive eigenvalues as functions of e. Since these eigenvalues only exist for T < 2q'/* we have marked the points where 
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(b) 
- 

0.1 

F‘ 0 

-0.1 

10-4 10-3 1 0-2 lo-‘ 100 10’ 
71 

-0.1 - 

7 = 2q’I2 holds with 0 in figure 1. We observe that near the numerical singularity 
the smallest of these eigenvalues is close to l/AC = lo4. 

In figure 4(a,b) we have plotted the F’ component of the corresponding eigenfunc- 
tions at = 0.101. As predicted by the asymptotic analysis these eigenfunctions are 
almost identicical for q > 0.5. 

In figure 5 we have plotted A1/”’/F’’(0) as a function of the local variable ~ 1 2 ” ~ .  
Again we observe that in that scaling the eigenfunctions agree near the wall as 
predicted by the asymptotic analysis. The eigenfunctions differ only in the number of 
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7 p y 3  

FIGURE 5. Eigenfunctions Fi,. . . , F; corresponding to the eigenvalues 11 . . .As 
inner variable ( = of (2.10H2.13). (f ,9,g) is the solution of the initial 
initial data (0 = 0.05,a = -0.001438 at t = 0.101. 

as functions of the 
value problem with 

extreme values in the intermediate zone beetween the outer variable q and the inner 
variable = q/A1l3. 

Wickern ( 1987) investigated the numerical solution of the modified boundary-layer 
equations most thoroughly of all previous authors. He compared two different 
discretization methods: a 'lagging' method used by Schneider & Wasel (1985) and a 
modified Keller box scheme. In both cases the numerical solution terminated in a 
singularity which depends on the stepsize in the <-direction. For the case of the Keller 
box scheme he found empirically Scrir - 

To avoid the numerical difficulties Wickern (1991a,b) used the regular expansion 
(2.8) to prescribe parts of the pressure gradient: equation (2.6) is replaced by 

where 8!4) are the first four terms of the regular expansion (2.8). With this ad 
hoc assumption a singularity of Goldstein type is obtained, which seems to be 
incorrect. For comparison we have plotted the results for the skin friction of 
Schneider & Wasel (1985) and Wickern (1991a,b) in figure 1. 

7. Conclusions 
We have shown by an asymptotic analysis that the real part of the spectrum of the 

linearization is not bounded uniformly from above which explains the numerical diffi- 
culties observed by previous authors (Schneider & Wasel 1985; Wang & Kleinstreuer 
1990; Wickern 1987). Furthermore we proved a relation between the stepsize in the 
t-direction and the location of the numerical singularity which was found empirically 
by Wickern (1987). 

Two types of large positive eigenvalues exist. Near the leading edge of the plate 
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a large positive eigenvalue exists and secondly if the wall shear stress is less than a 
critical value depending only on the heat flux on the plate an unbounded sequence 
of positive eigenvalues exists. Both types of eigenvalues are found by an asymptotic 
expansion. 

Since all computed solutions branch off from a very small neighbourhood of the 
regular expansion and since we have shown that the initial value problem starting 
at < = 0 has no unique solution we conclude that all computed solutions may 
correspond to solutions of the boundary-layer equations. But we cannot choose any 
of these solution as the physical relevant solution. 

The behaviour near the point where T~ = 4q has not been discussed yet. Since the 
differential equation is singular at this point due to the large positive eigenvalues, we 
expect that solutions can branch off from a given solution. This behaviour is reflected 
in the numerical singularity which occurs when AAy - 1 holds. 

Further research is needed into which of these boundary-layer solutions is of 
physical relevance and can approximate a solution of the original Navier-Stokes 
equations. 

I want to thank Professor W. Schneider for drawing my attention to this boundary- 
layer flow problem and for many discussions about the physical consequences of 
these formal properties of the modified boundary-layer equations. The support by the 
Austrian Science Foundation (FWF), Project No. P9584-TEC is also acknowledged. 
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